\(\int \frac {c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx\) [986]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 15 \[ \int \frac {c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx=-\frac {c}{3 e (d+e x)^3} \]

[Out]

-1/3*c/e/(e*x+d)^3

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {24, 21, 32} \[ \int \frac {c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx=-\frac {c}{3 e (d+e x)^3} \]

[In]

Int[(c*d^2 + 2*c*d*e*x + c*e^2*x^2)/(d + e*x)^6,x]

[Out]

-1/3*c/(e*(d + e*x)^3)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 24

Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((A_.) + (B_.)*(v_) + (C_.)*(v_)^2), x_Symbol] :> Dist[1/b^2, Int[u*(a + b*
v)^(m + 1)*Simp[b*B - a*C + b*C*v, x], x], x] /; FreeQ[{a, b, A, B, C}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] &&
 LeQ[m, -1]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {c d e^2+c e^3 x}{(d+e x)^5} \, dx}{e^2} \\ & = c \int \frac {1}{(d+e x)^4} \, dx \\ & = -\frac {c}{3 e (d+e x)^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 15, normalized size of antiderivative = 1.00 \[ \int \frac {c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx=-\frac {c}{3 e (d+e x)^3} \]

[In]

Integrate[(c*d^2 + 2*c*d*e*x + c*e^2*x^2)/(d + e*x)^6,x]

[Out]

-1/3*c/(e*(d + e*x)^3)

Maple [A] (verified)

Time = 2.38 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.93

method result size
gosper \(-\frac {c}{3 e \left (e x +d \right )^{3}}\) \(14\)
default \(-\frac {c}{3 e \left (e x +d \right )^{3}}\) \(14\)
risch \(-\frac {c}{3 e \left (e x +d \right )^{3}}\) \(14\)
parallelrisch \(-\frac {c}{3 e \left (e x +d \right )^{3}}\) \(14\)
norman \(\frac {-\frac {d^{2} c}{3 e}-\frac {c e \,x^{2}}{3}-\frac {2 c d x}{3}}{\left (e x +d \right )^{5}}\) \(31\)

[In]

int((c*e^2*x^2+2*c*d*e*x+c*d^2)/(e*x+d)^6,x,method=_RETURNVERBOSE)

[Out]

-1/3*c/e/(e*x+d)^3

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 36 vs. \(2 (13) = 26\).

Time = 0.28 (sec) , antiderivative size = 36, normalized size of antiderivative = 2.40 \[ \int \frac {c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx=-\frac {c}{3 \, {\left (e^{4} x^{3} + 3 \, d e^{3} x^{2} + 3 \, d^{2} e^{2} x + d^{3} e\right )}} \]

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)/(e*x+d)^6,x, algorithm="fricas")

[Out]

-1/3*c/(e^4*x^3 + 3*d*e^3*x^2 + 3*d^2*e^2*x + d^3*e)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 37 vs. \(2 (12) = 24\).

Time = 0.13 (sec) , antiderivative size = 37, normalized size of antiderivative = 2.47 \[ \int \frac {c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx=- \frac {c}{3 d^{3} e + 9 d^{2} e^{2} x + 9 d e^{3} x^{2} + 3 e^{4} x^{3}} \]

[In]

integrate((c*e**2*x**2+2*c*d*e*x+c*d**2)/(e*x+d)**6,x)

[Out]

-c/(3*d**3*e + 9*d**2*e**2*x + 9*d*e**3*x**2 + 3*e**4*x**3)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 36 vs. \(2 (13) = 26\).

Time = 0.19 (sec) , antiderivative size = 36, normalized size of antiderivative = 2.40 \[ \int \frac {c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx=-\frac {c}{3 \, {\left (e^{4} x^{3} + 3 \, d e^{3} x^{2} + 3 \, d^{2} e^{2} x + d^{3} e\right )}} \]

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)/(e*x+d)^6,x, algorithm="maxima")

[Out]

-1/3*c/(e^4*x^3 + 3*d*e^3*x^2 + 3*d^2*e^2*x + d^3*e)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.87 \[ \int \frac {c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx=-\frac {c}{3 \, {\left (e x + d\right )}^{3} e} \]

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)/(e*x+d)^6,x, algorithm="giac")

[Out]

-1/3*c/((e*x + d)^3*e)

Mupad [B] (verification not implemented)

Time = 9.57 (sec) , antiderivative size = 35, normalized size of antiderivative = 2.33 \[ \int \frac {c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx=-\frac {c}{3\,e\,\left (d^3+3\,d^2\,e\,x+3\,d\,e^2\,x^2+e^3\,x^3\right )} \]

[In]

int((c*d^2 + c*e^2*x^2 + 2*c*d*e*x)/(d + e*x)^6,x)

[Out]

-c/(3*e*(d^3 + e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x))